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This report documents the recent developments in methodologies for the evaluation of the in-

tegrity and durability of composite structures, including i) the establishment of a stress-intensity-

factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2);

ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode

stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical

results show that the proposed fracture criterion is a better fracture criterion than the total energy

release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed vir-

tual crack closure integral method is an efficient and accurate numerical method for the evaluation

of mixed-mode stress intensity factors.

1 Introduction

Laminated composites made of graphite epoxy have a higher stiffness modulus than aluminum,

as well as other prefered material properties, which make them highly attractive. As a result,

their application have been steadily increasing in the past decades. Among the various failure

mechanisms for laminated composites, the propagation of a delamination crack is often the leading

cause of global failure for a structural component. Therefore, the potential disbonding is one

of the critical problems in the evaluation of the integrity of composite structures. This research

is to enhance the capability to predict the strength of structural components made of composite

materials.

The prediction of the onset of propagation of a delamination crack in a laminated composite

was often based on the total energy release rate of the delamination crack. However, various

recent experiments have pointed out that the critical energy release rate of a delamination crack is

dependent on the combination of individual modes of failure; mode I (opening), mode II (shearing),
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and mode HI (tearing). For example, the critical energy release rate for a mode I fracture is an

order of magnitude less than the critical energy release rate for a mode III fracture in a T300-

5208 unidirectional laminate. Hence, the critical total energy release rate for any two delamination

cracks would be quite different unless the ratio of mixity of the fracture modes is similar. This

indicates that total enegy release rate is not a good candidate as a fracture criterion for a mixed

mode fracture.

Some researchers have suggested the use of the components of mixed-mode energy release

rates as the fracture criteria for a delamination crack between two dissimilar lamina. However,

numerical (finite element) results [Sun and Jih (1987) and O'Brien (1982)] indicates that the in-

dividual components, in mode I and mode II, of the energy release rates for an interfacial crack

are strongly dependent on the mesh refinement of the finite element model. Raju et al. (1988) has

shown mathematically that the mixed-mode energy release rates of an interfacial crack does not

converge upon mesh refinement, using crack-closure integrals in the context of an analysis based

on finite element method. In addition, Chow and Atluri (1995) have shown that the three individual

mixed-mode energy release rates, ( Gt, Gtt, GtLr ), are insufficient to characterize the stresses and

displacements near the interfacial crack tip. Coupled mixed-mode energy release rates, ( Gtt-m,

Gt-m, Gt-tt ) are required to fully describe the asymptotic stresses and displacements near an in-

terfacial crack tip. Therefore, it is cumbsome to use components of energy release rates for fracture

criteria.

However, the mixed-mode stress intensity factors of an interfacial crack are not dependent

on the numerical model, unlike the mixed-mode energy release rate components. In the area of

interfacial fracture mechanics for isotropic bimaterials, the mixed-mode stress intensity factors

are preferred by many researchers as the fracture parameters to define the toughness function of

an interfacial crack. The mixed-mode stress intensity factors for an interfacial crack between

dissimilar isotropic media were first defined by Williams (1959), and Rice and Sih (1965). They

have found that the stress oscillates and the crack surface overlaps near the interfacial crack tip in a

linear elastic fracture analysis. However, this solution can be justified [Rice (1988)] in engineering

sense when the nonlinear material behavior and crack surface contact zone exists only in a small

scale at the crack tip.

The acceptance of stress intensity factors for laminated composites has been slow, until recently

a clear mathematical definition of stress intensity factors for an interfacial crack in an anisotropic

bimaterial continuum has been established [see Wu (1989); Qu and Li (1991) and Qu and Bas-

sani (1993)]. This definition of stress intensity factors reduces to the classical definition of stress

intensity factors when the bimaterial continuum degenerates to a homogeneous one. This report

documents the development of a fracture criterion based on this definition of stress intensity factors

and numerical methods for its evaluation.
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2.1 Crack _p solution for a bimaterial interfacial crack

Consider a two dimensional deformation in an anistropic material, in which the displacements

depend on the Cartesian coordinates, Xl and x2 only. The stress (_ij and strain Ekt satisfy the

following constitute relation.

3 3

(_ij : Z Z cij klEkl

k=l l=1

(i)

Three distinct complex eigenvalues pj (with positive imaginary parts), and two eigenmatrices

A3x3 and B3x3 can be defined from the modulus' Cijkl using Eq. 2.

where

-T-1R r T -1 Ao [A
Qik : C/lkl Rik : Cill(2

The eigenmatfices A and B can be normalized so that

pl 0 0

0 p2 0

0 0 p3

Tik = Ci21(2

BTl[° IO3][AI3x3 B ] = I6x6

(2)

(3)

(4)

where superscripts (1) and (2) signify material #1 and material #2, respectively.

Using the complex variables, zj (j=1,2,3), defined by

Zj _---Xl -_- pjx2 (7)

one can express a displacement field (ui) and its assoicated stress field ((_ji) in the anisotropic

medium using three analytic complex functions, fl (Zl), f2(z2), f3 (z3).

(6)

where I is the identity matrix.

Two real matrices, S and L, can then be defined by the normalized eigenmatrices, A and B, as

L = -2iBB r S = i (2AB T - I) (5)

In an anisotropic bimaterial medium of material (1) and material (2), a bimaterial matrix _ can be

defined as
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U i = 2Re Aij fj (zj)

.l
a2i = 2Re Bqfj (zj

(8)

(9)

(10)

Consider a semi-infinite and traction-free crack between two anisotropic media of material (1)

and material (2) [see Beom and Atluri (1994) for more details]. The three complex functions

ft_m)(zj_,--j," for material #1 and #2 are:

ft_l)fm)(Zj)= =I_____TB(1)-' (I+il]) Y(z_e)@.,n(m= 1,2,3) (II)
2V/2_Z j

ft_ 2)(m)(zj)- 2_I _rB(2)-,,(I - i1_) Y(z_E)_m (12)

where

i _1 [ 1 ig._zyie}] 1_2 (13)Y(_) =I+_-_{ ic -i_l I-{z.iz:-zj / v :
!

,={--2it(02) } I (14)

1 (1 +_'_
E = _xln \ 1--_] (15)

and _j 0=1,2) are the normalized base vectors. Note the difference between the matrix _ and the

scalar variable 13.

When the analytic functions, fj(") (z j), are substituted into Eq. 8-10, one obtains the crack tip

stress field and displacement field.

The stress along the interface is

1

't(Xl) -- 2_Y (x_C) k

where % is { oh2,022,023 }r; and k = {Ktt, Kt, Kin} r is the vector of stress intensity factors.

(16)
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Equivalent stress intensity factors for the characterization of mixed-mode singular stress

fields

Consider an interfacial crack between two laminae, [0, 0_], where the ply angles of the upper and

lower plies are 0 and ct respectively. For a crack in a homogeneous material, in which 0 is equal

to t_, the singular stress field along the interface can be decoupled into three individual modes: 0-22

governed by Kt; 0"12 governed by Ktt; and 0"23 governed by Ktlt.

However, such one-to-one relation does not exist for a bimaterial interfaciaI crack. As shown

in Eq. 16, the oscillation index, 8, produces all the stress components along the interface for each

mode governed by KI, Kti or Ktll. Therefore, the singular stress field cannot be decoupled into the

three unique individual modes. Each of the singular stress fields along the interface is a function

of the three stress intensity factors coupled by the oscillation index.

It is postulated that the fracture of an interfacial crack is determined by the singular stress field

in the region near critical damage radii. The equivalent stress intensity factors _ro -- {l_It, l_t,l_ttl } 7"

at a characteristic radius ro can be defined to characterize the singular stress field in the region near

critical damage radii. 1

[ro = Y (_e) k (17)

Then,

1 Y (_x/_) _ _ 1.____1_

X(Xl) = _ y (_)
(18)

It is seen from Eq. 18 that the equivalent stress intensity factor [ makes the coupling very weak

near the characteristic radius ro.

The damage radius for a mode I and mode II crack can be approximated with

1 _K,c_ 2

rt = 2---_k,o'_2_ J (19)

l fKIIc_ 2

r Il = 2---_ik O_12t]

Using the experimental data from Tab. 1, the damage radius of an interfacial crack in a T300-

5208 graphite-epoxy laminate are rt = 0.05ram and rH = 0.24mm. Since the magnitude of these

two damage radius are close to the magnitude of the ply thickness (tpty = 0.127ram), the ply thick-

ness, tply, can be used as the characteristic length used in the defintion of the equivalent stress

intensity factor, [.

With the ply thickness as the characteristic length, the coupling between (t_12 and J_t) and

(c22 and/_tt) for the interface [0/90] are significantly reduced near the failure region. Along the

1 It can be shown that the definition of f_ro is invariant of different measuring units [Rice (1988)].
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Table 1" Experimental data for the critical energy release rate and their e-

quivalent stress intensity factor of T300-5208

Ref. 4

Ref. 5

Ref. 6*

Ref. 22

Average

G/c Gt/c G/ltC

(Jim2)

103 279-587 -

88 154 -

- - 1200

96 340 1200

K1c KHc Kmc

(MPa V/_)

0.91 2.7-3.8

0.84 2.0

2.3

0.88 2.9 2.3

yult o_lt22

(gPa)

50 75

50 75

* Experimental value for AS4/3501-6 graphite epoxy.
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Figure 1: The decoupling of stress near the interfacial crack using ply thickness as the characteristic

length for stress intensity factor definition
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interface, 0. ltply < xl < lOtpty, the normalized coupling between the singular stress field and the

stress intensity factor is less than 10% as shown in Fig. 1. As a result of this decoupling effect, the

equivalent stress intensity factors of an interfacial crack has a similar physical interpretation with

the stress intensity factor of a homogeneous crack near the damage region, in the sense that the

strength of the singular stress field along the interface near the damage radius for mode I, mode II,

and mode III are governed by/_], l_tt, and 1_ttt respectively.

/t,
a22(xl)

/t,,
cr12(Xl) _ _, for

Rm
a23(x1)

X l - tply <_ [_; _'_ _ 0

(20)

2.3 A proposed stress intensity factor based fracture criterion

Rice (1988) first suggested that the interface fracture toughness be defined by the total energy re-

lease rate and the phase angle of the stress intensity factor, _ = tan -1 (Ktt/Kt). Since then, many of

the fracture toughness experiments for an interfacial crack are based on these two fracture param-

eters. Wang and Suo (1990) have used the Brazil nut specimen to obtain the interface toughness

function for a Plexiglas/epoxy interface. Shanbhag et al. (1993) performed some fracture tests for

perspex/epoxy, aluminum/epoxy and steel/epoxy interfaces using the compact tension specimen.

Yuuki et al. (1994) have used the Brazil nut specimen to obtain the interface toughness function

for an aluminum/epoxy interface. However, instead of using the energy release rate and the phase

angle as the fracture criterion, Yuuki suggested a fracture criterion based on the quadratic mixture

of the normalized stress intensity factor:

KIC ] + _ _tlC ] = const

where Ktc is the critical value for a pure/_t and l_ttc is the critical value for a pure/_H. By

normalizing the individual components of the stress intensity factors, the relative importance of

each component is physically more intuitive• Unlike the fracture criterion based on the phase

angle, this criterion can be easily extended to include the component/_ttt without the loss of the

physical insight.

In the present work, the quadratic mixture of the stress intensity factor is modified to include

the component/_m. Furthermore, an additional factor of 0.85 for Ktc is added to reflect on the

experimental observation [Yuuki et al. (1994)] that Ktc drops significantly when a small Ktt/Kt

exists as shown in Fig. 2. With this additional factor, the quadratic mixture theory would be valid

for a wide range of Ktt/Kt and this theory would deviate from the experimental results only when
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Figure 2: Fracture results for an interface crack

KtffKt is very small. The fracture criterion used to predict the onset of a delamination crack growth

is as follows:

: e,
= \ o.8 ,c : + \ K,,c] + \ :

J_0 _> 1 -+ interfacial crack failure

(22)

2.4 Interfacial fracture criterion for laminated composites

Consider an example of a delamination crack between the [0/90] laminate as shown in Fig. 3. The

0 lamina denotes that the fiber direction is along the out-of-plane direction, while the 90 lamina

denotes that the fiber direction lies parallel to the crack. Since all of the experimental fracture data

for the critical stress intensity factor, Kc, is based on a delamination crack in a unidirectional lam-

inate, a question arises on whether the fracture data for [0/0] or [90/90] laminate could be used to

predict the onset of delamination crack in the [0/90] laminate. Fig. 4a shows the stress distribution

along the interface between the [0/90] laminate near the crack tip; and Fig. 4b shows the stress

singularity near a crack in a homogeneous laminate ([0/0] or [90/90]) with the stress intensity fac-

tor of 1_t/Ktc = 1. These figures show that the stress distributions for both the cracks (bimaterial

and homogeneous) are very similar except for a small region where there is considerable material

nonlinearity and damage (defined as Zone 1 in the figures). Since the fracture of the delamination

crack is assumed to be based on the stress concentration near the damage radius and the stress field

near this damage radius for the interfacial crack is very similar to the homogeneous crack, the crit-
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Interfacial crack between [0/90] laminate

a

b

e

O*

Xl

90 °

X3

Crack between [90/90] laminate

.....- ...... _-__ .... 90°

K[g

Crack between [0/0] laminate

Figure 3: The critical stress intensity factor for an edge delamination crack between (a) [0/90]

laminate, (b) [90/90] laminate, and (c) [0/0]laminate
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ical stressintensityfactorfor [0/90] laminate,/_[0190] c, should be the related to the value of either

K[O/O]C or K[90/90]C. In addition, Lucas (1992) has performed some experiments on the fracture of
a delamination crack in unidirectional laminates of different ply angle and found that the fracture

toughness of a [90/90] laminate is less than a [0/0] laminate, K[90/90]C < K[O/O]C. Since a delami-

nation crack between two dissimilar lamina can fracture at either the upper or lower lamina, it is

reasonable to assume that the delamination crack would fracture at the material of lower fracture

toughness. Hence, using this assumption, the critical stress intensity factor for [0/90] laminate,

g'[0/90]c, would be postulated asK[90/90]C.

The nature of the stress field near a bimaterial interfacial crack is often defined by mixed-mode

stress intensity factors. To deal with this, Chow and Atluri (1996) have suggested a mixed-mode

fracture criterion based on the quadratic mixture of the mixed-mode stress intensity factors:

( 2 2 2
o.ssK, :+ + = 2

_0 > i_ --+ interfacial crack failure
(23)

where Ofac is a non-dimensional constant dependent on the angle between the crack front and

the fiber's direction. From the experiments performed by Lucas (1992), Ofac for [90190] laminate is

1.00, Ofac for [45145] is 1.15, and OfacfOr [0/0] laminate is 1.61. This experimental result indicates

that the [90/90] laminate has the lowest fracture toughness followed by the [45/45] laminate and

then the [0/0] laminate. Using the assumptions discussed above, in which the bimaterial interfacial

crack would fail at the material with a lower fracture toughness, the constant Ofac for [45190] and

[45/0] would have the same values as [90/90] and [45/45] respectively. Therefore, Ofac for [45/90]

and [45/0] would have the values of 1.00 and 1.15 respectively. These two values would be used

in the post-buckling analysis discussed in the next section. Since the normalized stress intensity

factor, R0, is composed of mixed-mode stress intensity factors normalized with their respective

critical stress intensity factors, g'0 is a non-dimensional value. In the examples of composite lam-

inates under uniaxial tension, Chow and Atluri (1996) have demonstrated that the critical stress

intensity factor, Rc, has the value of one when the delamination crack propagates in a 2-D fashion

in which crack front remain straight. However, in the post-buckling failure of a stiffened laminat-

ed composite panel, the delarnination crack propagates in an elliptical shape rather than in a 2-D

fashion. As a result, the critical stress intensity factor, igc, to be used in the post-buckling analysis

would have to be determined from the experimental data.

2.5 The effect of characteristic length

Chow and Atluri (1995) have studied the effect of characteristic length on the normalized stress

intensity factor, g'0. In the few examples they have considered, the value of/_0 changes by only a

few percent when the characteristic length changes by an order of magnitude. The relationship of

mixed-mode stress intensity factors for different characteristic lengths is given by Qu and Bassani
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Figure 4: Stress distribution near the (a) interfacial and (b) homogeneous crack tip with Zone

1 being the damage zone ( or nonlinear region) and Zone 2 being the region where the stress

concentration influences the onset of crack propagation. Since the stress concentration at zone 2

are the same for both laminates, the fracture criterion for both laminates should be similar

(1993) as

Er, = Y (rl/ro) f¢ro (24)

where Y is a bimaterial matrix for the inteffacial crack and k = t,Y,/,Kll/

Consider a delamination crack between two angle-ply lamina, q and f, and the stress intensity

factors, _:ro, are varied in a unit sphere:
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Figure 5: A contour plot of maximum change in the value of Ro for various ply lay-ups [0, _], when

the stress intensity factor, R'ro, are varied in the unit sphere with the characteristic length reduced

by an order of a magnitude
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Figure 6: The probability of any combination sets of stress intensity factors, {_tt, l_t,l_ttt} T of a

delamination crack in any [0/_] laminate which would result in the value of/_o to be changed by a

certain factor when the definition of the characteristic length is reduced by an order of a magnitude
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Rt = sin (a) cos (13)

g'u = sin (a) sin (13) (25)

g:m=cos(a)

where - 180 ° < a, [3 < 180 °. By varying the stress intensity factors, kr0, in the unit sphere defined

in Eq.25, a contour plot of the maximum change in the normalized stress intensity factor,/_'0, for

various ply iayups -90 ° < 0, ¢_< 90 °, when the choice of characteristic length is reduced by an

order of a magnitude is shown in Fig. 5. Except for the region near [0/90] interface, the effect

of the characteristic length is quite small. Even for the [0/90] interface, the maximum change in

/_'0 is less than 13%. To put things in perspective, a few percent change in/_0 is really not very

significant from an engineering point of view given the fact that most of the experimental data

for delamination fracture would vary by 10%-20%. Moreover, the number of combinations of

{ _iI, i_1,1_III} T and [0/_] which gives significant change in the value of -_0 is quite small; for 90%

of the possible combinations of {l_ii, l_t,l_m} T and [0/_], the value of _0 would change by no

more 5% as shown in Fig. 6. Only 0.5% of the possible combinations would cause the value of/_0

to differ by more than 10%.

2.6 Validation

The analysis presented in this section is based on the quasi-three-dimensional finite element method

under generalized plane strain condition. This finite element analysis is based on eight-noded

quadrilateral, isoparametric elements with 3 degrees of freedom per node. Standard quarter-point

elements are used to model the interfacial crack tip. The numerical calculations performed in this

section are for the T300-5208 graphite epoxy using the following elastic properties:

EL = 137GPa, Er = Ez = IO.8GPa, Gzr = 3.36GPa, GZL = GTL = 5.65GPa, Vrz = 0.49,

VzL = VTL = 0.238, tply = 0.127mm

Here, L is the longitudinal direction, T is the transverse direction, and Z is the direction through

the thickness. The experimental data for the critical energy release rate and the stress intensity fac-

tors of a mode I, II and IH crack are listed in Tab. 1. These experimental results were obtained from

double cantilever beam specimens with an initial crack front normal to the fibers' direction. In the

present section, the critical stress intensity factors are based on the average of these experimental

data. The fracture criterion used to predict the onset of delamination crack growth is based on the

quadratic mixture of the normalized stress intensity factor defined in Eq. 22.

Mode I and H dominant crack

The stress intensity factor for a delamination crack in a laminate under tensile loading can be

mode I and II dominant when the stacking sequence consists of 90 ° plies being laid-up with plies of
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Table2: Laminateswith modeI andII dominantdelaminationcrack

Laminate Crackbetween

[+30/4- 30/90/9--0]s -30/90

[+45/0/90] s 0/90

[4-452/02/902] S 02/902

[4-453/03/903] S 03/903

[0/4-45/90] S --45/90

KI¢ Kttc Kmc Gtc

213 86 -11 5.8E4

146 29 - 1.4 1.8E4

206 41 -2 3.5E4

253 50 -2.4 5.4E4

80 65 -6.9 1.8E4

Laminate Crack between Predicted Real Error

Laminate Crack between Failure _33 Failure _33 g33-e_3
e,a3

[4-30/+ 30/90/9--0"] s -30/90 0.0038 0.0035 8%

[4-45/0/90] s 0/90 0.0057 0.0056 3%

[4-452/02/902] S 02/902 0.0041 0.0047 - 12%

[4-453/03/903] s 03/903 0.0033 0.0037 -10%

[0/4- 45/90] s --45/90 0.0087 0.0080 3%

different angles. The mismatch of the lateral contraction due to the Poisson's effect between the 90 °

plies and plies of different angles can sometimes be sufficient to cause the onset of delamination

crack growth. Some of the examples for mode I and II dominant crack are listed in Tab. 2.

Tab. 3 lists the calculated stress intensity factor and energy release rate for two free-edge delam-

ination cracks in a [4-30/4- 30/90/9--0"] s laminate. The criterion based on the total energy release

rate predicts that the crack would propagate along the second [+30/- 30] interface. However, the

criterion based on stress intensity factor predicts the delamination crack would propagate along

[-30/90] interface which agrees with the experimental observation from O'Brien's research.

In Tab. 2, the criterion based on the total energy release rate predicts both [0/4- 45/90] s and

[4-45/0/90] s laminates would fail under the same tensile load since both laminates have a delam-

ination crack of the same energy release rate. However, the criterion based on the stress intensity

factor predicts the [0/4- 45/90] s laminate would fail at a strain 50% greater than the [4-45/0/90] s

laminate which agrees with the experimental results. Furthermore, Tab. 2 shows that the predicted

failure strains, based on the stress intensity factors, of various laminates are within 12% from the

experimental results [O'Brien (1982) and Sendeckyi et al. (1975)]. Hence, it validates the use of

stress intensity factor as the fracture parameter to predict the onset of delamination growth.

Note that all the delamination cracks listed in Tab. 2 lie on top of a 90 ° ply in which the normal

of the crack front is in the fibers' direction. Moreover, the normal of the delamination crack front

on the double cantilever beam specimen, in which the critical stress intensity factor is obtained,

is also in the fibers' direction. Therefore, the critical stress intensity factor listed in Tab. 1 can



Table3: Delaminationcracksona [4--30/+ 30/90/9--0-]s laminate

Interface crack between _ _ e33gm R0
_c _,c _iic Gm__

second +30/-30 143 55 108 207 7.0E4

-30/90 213 86 -11 265 5.8E4

15

be directly used in the examples listed in Tab. 2. However, the critical stress intensity factors do

change if the normal of the crack front deviates from the fibers' direction. The experiment by Lucas

(1992) has shown that as the angle between the normal of the crack front and the fibers' direction

increased, the critical stress intensity factor would increase as well. Hence, some adjustment on

the fracture criterion would be required when the interfacial crack does not lie either on top or

bottom of a 90 ° ply.

Mode III dominant crack

When a laminate of -1-0 layers, where 0 is between 0 ° and 90 °, is under tensile loading, the coupling

between the normal strain, _33, and the transverse shear stress, a23, are directly opposite for +0

and -0 layers. As a result, the stress intensity factor of a delamination crack between 4-0 layers

is often mode HI dominant when the laminate is under tensile loading. In this study, the fiber

orientations of 10°, 30 °, and 45 ° are considered. The stacking sequence of the laminate is either

[(4-0)2] s (alternating) or [02/-02] s (clustered).

Tab. 4 lists the calculated stress intensity factors and the comparisons between the predicted

failure strain and the experimental results by Herakovich (1982). There are several explanations

that can be given for the considerable disparity between these results. For [(4-10)2 ] s and [(4-30)2 ] s

laminate, Herakovich observed no delamination propagation when these laminates failed. In fact,

using the Tsai-Hill failure theory, we can see that these laminates failed because the stresses on

each lamina exceeded the ultimate stress. The reasons for the prediction errors for other laminates

can be attributed to the wrong assumption used in describing the crack front. Observations from

the experiments for these stacking sequences show that the delamination propagates in a triangular

shape rather than in a straight crack front shown in Fig. 8. Hence, to fully model the delamination

growth for these laminates, a full three-dimensional model must be used instead. Furthermore,

material nonlinearity must also be taken into account in analyzing the failure of 4-45 ° laminate.
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Table4: Laminateswith modeIII dominantdelaminationcrack

Laminate Interfacecrackbetween _ e33Rtt _33Rm
KlC Kttc KIIIC Glc

[(+10) 2] s second +10/- l0 -2.6 2.2 100 3.9E4

[(-t-30) 2] s second +30/- 30 11 12 87 2.3E4

[(+45) 2] s second +45/-45 6.9 8 31 3.8E4

[+ (102)] s +102/- 102 -8 0.4 173 1.2E4

[4- (302)] s +302/- 302 -7.5 0.0 160 7.3E4

[4- (452) ] s +452/- 452 -2.6 0.0 61 1.3E4

Laminate Interface crack between Predicted Real Error

Failure _33 Failure E33
E33

[(4-10) 2] s second +10/- 10 0.0100 0.0070 43%

[(+30) 2] s second +30/- 30 0.0113 0.0117 -3%

[(-t-45) 2] s second +45/- 45 0.0301 0.0158 90%

[4- (102) ] s +102/- 102 0.0058 0.0049 18%

[4- (302) ] s +302/- 302 0.0063 0.0067 -7%

[+ (452) ] s +452/- 452 0.0163 0.0097 68%

3 A Virtual Crack Closure Integral Method for the Evaluation of Mixed-mode SIF for

lnterfacial Cracks

This section documents the development of a virtual crack closure integral method for the evalua-

tion of mixed-mode stress intensity factors for an interfacial crack between two dissimilar isotropic

and anisotropic mediums. The mixed-modes stress intensity factors can be related to a set of en-

ergy release rates by the use of a coupled mixed-mode energy release rate. Therefore, the stress

intensity factors can be easily solved for once the mixed-mode energy release rates are evaluated

from a finite element solution.

The modified crack closure integral method has become a useful technique in calculating the

fracture parameters of a crack lying in a homogeneous isotropic domain. This method is attrac-

tive for many researchers and engineers because of its simplicity and effectiveness in calculating

the individual components of the mixed-mode stress intensity factors and the energy release rates.

The Irwin's virtual crack closure method was first applied by Rybicki and Kanninen (1977) with

4-noded isoparametric finite elements to compute the mixed-mode energy release rates of a crack

lying in a homogeneous isotropic domain. To improve on the accuracy of the computed frac-

ture parameters, Raju (1987) has further extended this method for higher order and singular finite

elements.

To calculate the stress intensity factors for an interfacial crack in an isotropic bimaterial con-
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tinuum,Lin andMar (1976)havedevelopedthehybrid stresselementmethod,andKathiresanand
Atluri (1978)havedevelopedthehybriddisplacementelementmethod.Usingthemutualintegral,
M, Choet aI. (1994)havecalculatedthestressintensityfactorsfor aninterfacialcrackbetweent-
wodissimilarisotropicmediafromthestressresultsof anordinaryfiniteelementanalysis(without
theneedto developahybridelement).Chowet al. (1995)havefurtherextendedboth thehybrid
stresselementmethodandthe mutualintegralmethodto computethe stressintensityfactorsfor
an interfacialcrackbetweendissimilaranisotropicmedia. However,thesemethodsrequiredthe
knowledgeof theasymptoticstressanddisplacementfield aroundtheinterfacialcracktip. Since
theasymptoticstressanddisplacementfield involvecomplexnumbers,thecalculationof thestress
intensityfactorsusingthesemethodsrequireaconsiderableprogrammingeffort.

The computationof the stressintensity factors for an interfacialcrack can be significantly
simplified, usingthe virtual crackclosureintegral approach.The stressintensity factorsfor an
interfacial crack can becomputedfrom the crack openingdisplacementsand the nodal forces
at and aheadof the crack tip. The simple formula to calculatethe stressintensity factors for
an interfacialcrack aregivenin threeseparatecategories:an isotropicbimaterialcontinuum,an
orthotropicbimaterialcontinuum,andananisotropicbimaterialcontinuum.

3.1 Virtual crack closure integral method

The work required to extend a crack by an infinitesimal distance A is equal to the work required to

close the crack to its original length [Irwin (1958)]. Thus, the energy release rate for mode I and

mode H deformations can be expressed as

Gt= _ cr22(r)82(A-r)dr (26)

lf0AGII = "_ ff12 (r)81 (A-r)dr

where tJ is the stress distribution ahead of the crack tip, and 8 is the crack opening displacement

behind the crack tip. Here, the crack-axis is along the Xl axis and normal to the x2 axis as indicated

in Fig. 7.

The procedure to obtain these energy release rates from finite element solutions were given

by Rybicki and Kanninen (1977) and Raju (1987). For quarter-point singular elements (shown in

Fig. 7), the energy release rate for mode I can be obtained from the nodal forces and displacements

near the crack tip (along the crack-axis) with the virtual crack closure technique as

IF(1) /'U(I) U (2) '_ /'U(1) U (2) '_
GI=-1 [ 2[i ] {tll_ 2[m] -- 2[m]] +t12 1k 2 [l] -- 2 [/]] }

F,(l) {/21 /'U(1) -- u(2) '_ [ (1) , (2) '_ (27)2[j] _ 2[m] 2[m]] +t22 KU2[l]--,_2[tl] )]
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t 1

Figure 7: Quarter-point singular elements surrounding the crack tip
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where

IF (1) {tli {u (1) -u (2) _ t' (1) , (2)GII = -_-_A [ 1[i] k lira] I [m],] -q-/12 _kUi [I]- '41 [I]] }

if(l) (t21 /U (1) -- U (2) '_ /' (1) (2)'[j] tk 1['] l[m,] q-t22_Ul[l]--Ul[l,))]

(28)

ql = 6--_-; t12 = 6g-20; (29)

1

t21 -- 2' t22= 1.

The symbol E 0) represents the nodal force computed from the singular elements in material 1 in2 [i1
the direction parallel to x2 axis at node [i] as shown in Fig. 7.

For a crack in a homogeneous domain, there exists no coupling between {O22(r) and 51 (A -- r)}

and between {o12(r) and i52(A- r)}. However, these couplings do exist for an interfacial crack

between two dissimilar media. Because of such couplings, the calculated energy release rates Gt

and Gtl are dependent upon the value of the distance A. As a result, Raju et al. (1988) as well as Sun

and Jih (1987) have found that the calculated energy release rates using the virtual crack closure

integral method are dependent upon the mesh refinement of the crack tip elements surrounding

an interfacial crack. To resolve this problem, Chow and Atluri (1995) has introduced a coupled

energy release rate G1-1t to simplify the relationships between the stress intensity factors and the

mixed-mode energy release rates (obtained through virtual crack integral method). The coupled

energy release rate GI-II is defined as:

Gt_ll= _-_ [cr12(r) _(A-r)+oz2(r) _l (A-r)]dr (30)

Gt-tt can be evealuted for the nodal forces and displacments at the nodes of the quater-point

singular elements at the crack tip.
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= {tll u ,)÷tl2 u l)}

(31)

Once these energy release rates are calculated, the stress intensity factors for an interfacial

crack can be easily computed from a linear equation. The detailed relations for between stress in-

tensity factors and energy release rates for (i) an isotropic bimaterial continuum, (ii) an orthotropic

bimaterial continuum, and (iii) an anisotropic bimaterial continuum, are discussed in the remaining

part of this section.

3.2 Interfacial crack in an isotropic bimaterial continuum

For an interracial crack between dissimilar isotropic media, there exists an oscillation index which

causes the oscillation of stress and displacement near the crack tip. This oscillation index is defined

as

e = _ In [#2)+#_)K(2)j (32)

where p is shear modulus and K:= 3 - 4v for plane strain and }c = (3 - v)/(1 + v) for plane stress.

The stress field along the interface at a distance r ahead of a crack tip is given by

K r/E (33)
(_22 + i(_12 = 2V/_

where K = KI + iK1t is the complex stress intensity factor. The crack opening displacements at a

distance r behind the crack tip are given by:

C (l) q- C (2) Kx/_riC

62 +i51 = 2x/_(1 + 2ie)cosh(r_e)

where the compliance parameters, c, are

C(1) __ K (1) + 1 C(2) K (2) + 1

/2(1) //(2)

(34)

(35)
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SubstitutingEq.33andEq.34into Eq. 26-30,theenergyreleaseratescanbedefinedasfunc-
tionsof thecomplexstressintensityfactor,K.

where

al

C(!)+¢(2)

8ncosh (he)

F A2ieK2 IKI2 ,

limRe [1-_I1 + l_-s,2
(36)

C(1) q" c(2) [A2ieK2IK[212] (37)Gtt -- 8ncosh (rr,e) limRe i-+2-_ I1 + 1 +2ie

C (1) q- c (2) ]'A2ieK2 ]

GI-II- limlm |,--:-_._I1| (38)
4ncosh(ne) Ll--l-ZlE J

= f_/211 cos 2 co (sin cocos co) 2iedco
J0

(39)

fo n/2 cos 2I2 = co (COSco/sin co)2ie dco = n (1 + 2ie)
4 cosh (rraz)

(4O)

The integral 11 in Eq.39 is a Beta function and can be evaluated numerically using numerical

integration scheme. To simplify the relations between the stress intensity factors and the energy

release rates, the integral I1 is approximated with

n (1 1 2 i_e) (41)11 _ cosh (Tr,e) -- g8 --

This approximation is valid for the realistic range of e. Dundurs (1969) has shown that for an

interfacial crack in isotropic bimaterial continuum, the absolute value for the oscillation index, e,

has to less than or equal to (1/2n)ln3. The error of the approximation in Eq. 41 for this range

normalized with fo/2 cos 2 codco is less than 0.5%.

Substituting Eq. 39-41 into Eq. 36-38 and rearranging the equations, the simple relationship

between the stress intensity factors and the energy release rates are obtained:

where

[alla21+a22 a22a21--a122 ]( K2 }=_, { a21Gl--al2Gl-ll } (42)a22a21 --a22 alia21 +a122 K21 a21Gll+al2GI-Ii

_= 32cosh 2 (_) (1 +4e 2) (43)
C(1) q- C(2)
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( 1342 4)a11=(1+442)+ 1--_i--e)cos[2eln(A)]+ e_ _;3 sin [2Eln (A)] (44)

2{(-_4-e 443)cos[2eln(A)]-(1 -134 2'a12 = -- -_-£ ) sin[2eln(A)]j
(45)

134 2'_
a22= (1 +442) - (1--_-i-e )cos[2eln(A) ] - (-_e-443)sin[2eln (A)] (46)

=4{( 1-1342"_-_T-e / (_e 4e3) sin[2eln(A)]} (47)a21 / cos[2eln (A)] + -

Hence, the square of the stress intensity factors, K2 and K]t, can be easily solved from the

linear equation in Eq.42. The signs for the stress intensity factors, Kt and Ktt, can be ascertained

from the crack opening displacements. For a crack in a homogeneous isotropic continuum, e -- 0,

resulting in a considerable simplification of Eqs. 43-47, i.e.:

K 2 = 2G,, K2I = 2GtI (48)
C C

3.3 lnterfacial crack in an orthotropic bimaterial continuum

For an orthotropic bimaterial aligned with the interface crack coordinate system (e.g., a 0/90 degree

laminate where the fibers are parallel to the crack front in one material and perpendicular in the

other), the stress field along the interface at a distance r ahead of a crack tip is given by Qu and

Bassani (1993) as:

•,1/2 + il31/2a'2= 13 /2K +. 1/2tfiI
02 (_22 2V/2V/_

and the crack opening displacements at a distance r behind the crack tip are

(49)

_I/2_+i_/281=rc_(l+___le)c_ . i/2
(50)

The bimaterial constants

1 fl-4-[3'_
e= _-_ln \ 1---_J

(51)

13= V/_l _2 (52)
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s(O - s (2)

I_l = s(l)p(l)/Tl(l) +s(2)p(2)/Ti (2)

S (1) -- S (2)

[32 = S(1)/11 (1) + S(2)/1] (2)

are obtained from the orthotropic material constants

(53)

(54)

S= [Cl122+#C1111C2222] -1 (55)

C1212 (%/C1111C2222-C1122)

C2222 (2C1212 + C1122 "1- _/Cl 111 C2222)

1/2

(56)

4/-_111 (57)
P=V_

where Cijkl is the stiffness matrix that relates the stresses, (_ij, to strains, ekl

3 2

I_iJ = X X Cij klEkl

k=l 1=1

(58)

By substituting Eq.49-50 into Eq.26-30, the simple relationship between the stress intensity

factors and the energy release rates are obtained:

where

[ alla21 +a22 a22a21--a?2 ] { [32K2 ) {a21_L1Gl--al2_,2Gl-II) (59)a22a21-a122 alla21 +a22 _IK2II = a21XlGH+al2_.2GI-tl

8cosh 2 (/r£) (1 + 452) p2
Xl = S(1) __ S(2)

(60)

16cosh2(rug)(1+452)p3
L2= (s(1)_s(2))(p,+ p2)

(61)

The square of the stress intensity factors, K_ and K 2, can be easily solved from the linear

equation in Eq.59. The signs for the stress intensity factors, Kt and Kti, can be ascertained from

the crack opening displacements. Once again, for a homogeneous orthotropic continuum, the

relationship between the stress intensity factors and energy release rates are reduced to
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K'/= 2riG1, K_t = 2riGtl (62)
sp

3.4 Interfacial crack in an anisotropic bimaterial continuum

For a general anisotropic bimaterial continuum, the asymptotic stress field along the interface at a

distance r ahead of a crack tip is given by

"C(r)-- 1
2_ Y (/c) k (63)

and the crack opening displacements at a distance r behind the crack tip are

[ ]8(r) = _DY (1 +2ie)cosh(r_,e) k (64)

where "c= { 0"21, 0"22, 0"23} T, 8 = { 81, 82, 83 } r and k = {Ktt, Kt, Kin} r. The bimaterial matrices

D and W can be written in terms of the anisotropic matrices L and $ (Eqs. 5 and 5)

D =L (1)-1 +L (2)-1 (65)

W = S_I)L (1)-1 - S(2)L (2)-1

and the bimaterial function Y defined 6 in can be rewritten as

(66)

Y (r/e) = V (1) + sin (elnr)V (2) +cos(elnr)V (3)

DY (1 + 2ie)-cosh (raz) = U(1) + sin (eln r) U (2) + cos (e In r) U (3)

in which the matrices

I

_={-_tr([D-lW]2) } _

(67)

(68)

(69)

, (70)
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A proceduresimilar in thecaseof anisotropicbimaterialcontinuumcanalsobeappliedin the
caseof ananisotropicbimaterialcontinuum.For ageneralanisotropicbimaterialcontinuum,three
additionalenergyreleaseratesarerequired,

GIII _- _ f_ (_23 (r)53 (A- r)dr

[,.(1) f. t' (1) u (2) '_--t (u (1) --u (2) '_
"-- --2--_ [r3[i] I ql _U3tm]-- 3[m]) -i- 12 _ 3[I] 311]) }

_a__(1) r. {U (1) U (2) /-- t (U (1) u(2) / "1.|
-_ "3 [j] ],t21 _k 3 [m] -- 3 [m]) -t- 22 _, 3 ttl - 3 till J]

(71)

GII-III

R

1 foa[CY12(r)_3(A_r)+CY23(r)_)l (A-r)ldr2A

1 [17(1) {Ill / (1) ,(2) '_ (U_I?I] U_2[_])}2A ['i [i] _U3 [m] -- '*3 [m]] -}" t12 --

E x) {t21 ¢" (t) _,(2) _ t' (1) _,(2)1 [J] _U3 [m] "3 [m]] + t22 _U 3 [/1 _3 [l]] }

at;'(1) {/11 { (1) U (2) '_ +t12 fU (1) --U(2) '_ }"3 [i] _Ul [mI -- 3 [ml] _, 1 [l] 3 [l]]

l'(1) {t21 [ (1) • (2) '_ , (2) '_

(72)

GI-III m 1 foA[CY22(r)_3(A_r)+(_23(r)fy2(A_r)ldr2A

1 rE(l) (tll [ (1) u (2) _ + t12 [ (1) _, (2) '_
2A [ 2 [i] L. _u3 [m] - 3 [m]} _u3 [1] "3 [1]] j

F, 1) {t21 [ (1) u (2) "_ + t22 [ (1) , (2) _ "_2 [j] _u3 [m] - 3 [m]] _u3 [/] - '*3 [l]] j

7(1) {tli /U(I) U(2) _ [ (1) , (2) '_"3[i1 _, 2Ira l- 2[ml]+tl2kU2[l]--'*2[/]]}

+_(11 {t21 (U(I) U (21 / (u(l) , (2) '_"3[jl k2[m] 2 [m]] + t22 -- }]-- _, 2 [1] '_2 [1]]

Two additional integrals are introduced,

(73)

(74)

rx/2 • _t 17 _2_ 3ie
/3 = J0 COS20 (c°s0)EaZd0 "_ _ 1---00e;

1

I4= foZ/2cos20(sinO)2iedO_cosh(rr_) (4 _0 iE)

(75)

(76)

The stress intensity factors can be related to the energy release rates through the matrix A;

3 3

Aiklj E Z 1: rr(m)IT(n)"-- _n+3(m+l)_ki " lj

n=l m=l

(77)
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1 r 6 _ 1

_1 -- 2r_aJo V_-_r -dr= -4

_2 -- 21kfoaSin(e.lnr)_ dr

= l[cos(elnA)im/4+sin(elnA)Rei4]

1 _ a _r_d_3 -- 27tA cos (eln r) r

1 [cos (elnA) Rel4 sin (elnA) Im/4]

l
1 [cos (elnA) Im/3 + sin (elnA) ReI3]

l fo_sin(elnr)sin(Eln(A-r))_-_dr_5- 2rcA

1

-- 2_ [- cos (2eln A) Rell + sin (2_ In A) Im/l + ReI2]

_6 -- 21A fooaCOs (e lnr) sin (e ln (A- r) ) V_ dr

1

= 2--_[cos (2eln A) Imh + sin (2e In A) Rell + Im/2]

_7- 2rcA cos(eln(A-r)) r

_-- _1 [cos(elnA)Rela-sin(elnA)Im/3]

_8- 2_A sin(elnr)cos(eln(A-r)) r

_ 1 [cos(2elnA)Im/1 +sin(2elnA)Rell --Im/2]
2re

l foaCOs(elnr)cos(_ln(A-r))_dr_9- 2_A

= 1 [cos (2e In A) Rell -- sin (2e In A) Im/1 + ReI2]
2re

(78)

The matrix B which relates the stress intensity factors k with the energy release rates _ using

the matrix J..

Bk =_ (79)

where
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2 2 x/X/l)KiD KIII , KII KIII, KI KIII , (80)

= {GI, GII, Gill, GII-III, GI-III, G1-11} (81)

52222 (_ 1221

(X2112 51111

52332 0q331

0_2132 "{- 52312 51131+51311

52232 + 52322 51231 + 51321

52122-[-52212 51121 -q-51211

51223 "{'- 53221

51113 -]--53111

(Z1333 + 53331

51133 -'[-53131 +51313 "]- 53311

51233 -Jr-53231 q- 51323 q'- 53321

51123 + 53121 -[- 0f,1213 -Jr"53211

(Zl132+

51232+

51122+

51222+52221

51112+52111

(I,1332+52331

52131+51312+52311

52231+51322-[-52321

52121+51212-]-52211

53232

(Z3113

(Z3333

53133-k-53313

53233"+-53323

53123+53213

(Z2223-{-53222

0_2113+53112

0_2333+53332

0_2133-_-53132-{-52313-f-53312

52132+0_2312-at-52132-_-52312

52123-[-53122+52213+53212

(82)

(83)

The square of the stress intensity factors, K/2 , K21 and K2II, can be easily solved from the linear

equation in Eq.79. The signs for the stress intensity factors, X�, X/I and x/n, can be ascertained

from the crack opening displacements.

3.5 Numerical examples

Symmetric laminates under tensile loading

Consider a symmetric laminate under uniaxial tension as shown in Fig. 8. The edge delamination

crack front is assumed to be parallel to the x3 axis and growing in the x2 direction along the

interface between two dissimilar laminae. Therefore, only the cross section along the specimen

width is modeled using the quasi three-dimensional finite element method. For a generalized plane

strain condition, the displacement of the "Quasi 3-D" deformation has the form of



X2

crack

F-.33 X 3
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Figure 8: Schematic of edge delamination cracks in a symmetric laminate under uniaxial strain

r
Figure 9: The mesh for [4- 45/0/90]s and [01i45190]s laminate with an edge delamination crack

between the 0 and 90 degree ply

ul = u1 (xl,x2)

u2 = o'2(xl,x2)

U3 = U3 (x1,x2) +E33x3

(84)

Due to the symmetry conditions of the laminate and the uniaxial load, only a quarter of the

cross section needs to be modeled (with the mesh shown in Fig. 9).

Two different laminates (made of T300-5208 carbon epoxy) are considered in the present study;

[0/4- 45/90] s and [4-45/0/90] s. The onset of delamination crack propagation in both laminates

can be attributed to the mismatch in the lateral contraction (due to the Poisson's effect) between the

90 plies and plies of different angles. The computed stress intensity factors with the ply thickness

as the characteristic length are tabulated in Tab. 5. This result using the virtual crack closure

method compares favorably with the result by Chow et al. (1995) using the mutual integral method

with the particular solution. The difference between these two solutions is less than 2%.
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Table5: StressIntensityFactorsfor adelaminationcrack in a laminateunderuniaxial tension

Laminate

[-1-45/0/90]s
[0/-t-45/90] s

Crack
between

0/90

-45/90

Virtual Crack Closure
Integral Method

Ktc Krtc Klttc

145.9 29.0 -1.4

80.4 64.9 -6.9

Interactive Integral with
Particular Solution

Ktc KIIC Kmc

145.2 29.5 -1.4

79.5 65.6 -7.0

Characteristic length = tply

Ktc = 0.88 MPax/'_, Kttc = 2.9 MPax/-_, and Kmc = 2.3 MPax/-m.
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